FSC-MIT-1

## LEC#8 (8/11/2024)

# FIRST-YEAR PHYSICS FOR RADIOGRAPHERS

CHAPTER# 3 &4

MAGNETISM
ELECTROMAGNETISM









H/DR. AYESHA RAUF





## What is Magnet?

A magnet is a material or artificial setup that can produce its own field called magnetic field by which it attract ferromagnetic materials like iron, cobalt or nickel.

- Magnets, suspended through a string, always point towards the northsouth direction.
- A magnet always comes with a pair of magnetic poles, which cannot be seperated.



## Ferromagnetic

- Any material that possess magnetization WITHOUT an external magnetic field is ferromagnetic
- large and positive susceptibility
- Examples of ferromagnetic materials

Iron (Fe)

Susceptibility = 200

Cobalt (Co) Susceptibility = 70





- 4. Maximum force at poles and zero at middle.
- 5. When a magnet is broken into two parts then each part becomes a magnet with north and south pole that mean magnetic poles always exist in pairs.
- 6. Magnet produce its own magnetic field in which other magnet experiences magnetic force which can be repulsive or attractive.



## Magnetic Field & Lines of force

- The space around a magnetic pole in which another pole feel a force is called the magnetic field.
- Magnetic field can be visualized by magnetic lines of forces, which are imaginary lines.
- A line of force can be defined as the path taken by an independent north pole moving from the north pole of magnet to the south pole.



#### The Line of Force have the following properties:-

- They are imaginary lines.
- Starts at north pole and ends at the south pole.
- Two lines of force never cross each other.
- The lines of force are greater near the poles.
- Can never be closed loop.



## Magnetic Flux & Flux Density

- The total number of lines of force used to express pole strength is called the magnetic flux.
- Unit is weber (Wb).
- The term magnetic flux density (B) is defined as the magnetic flux per unit area.
- Unit is Wbm-2.
- SI unit of magnetic flux density is Tesla (T)
- CGS unit is Gauses (G)
- 1 Tesla (1T) = 10,000 Gauss.
- One Tesla = 1Wbm-2.
- The magnets used in MRI is in the range of 0.3-3 Tesla

# What is Magnetism?

- Magnetism: A magnet produce its own magnetic field by which it attract other magnet or iron-filling or iron substances, this property of attraction of magnet is called magnetism.
- This magnetic property is due to the motion of charged particles.
- As we know atom consist of positive charged nucleus & negatively charged electrons.
- These electrons circulate around the nucleus own orbit called orbital angular momentum & spin around own axis called spin angular momentum both the orbital and spin angular momentum form a tiny current loop which is turned produced magnetism.

### Properties of Magnet

- 1. Attractive property :- Magnet attracts ferromagnetic materials like iron, cobalt and nickel.
- 2. Repulsive property:- Like magnetic poles repel each other and unlike magnetic poles attract each other.
- 3. Directive property:- A freely suspended magnet always points in northh-south direction.





# Types of Magnet

- A). Natural Magnet :- Only Permanent
- B). Artificial Magnet :- 1. Permanent
  - 2. Temporary :- i) Electromagnet
    - ii) Superconducting Magnet









# A). Natural Magnet

- Natural magnets are magnets that found in nature.
- Natural magnets are minerals or metals that generate a stable magnetic field without artificial inducement.
- · All natural magnets are permanent.
- Example:- Lodestone(Magnetite):- Fe3SO4



# B). Artificial Magnet

- Magnet that are made artificially by the human by using different techniques or by inducing external source of energy is called artificial magnet.
- These magnets are magnetized piece of iron, nickel or cobalt by the external source of energy.
- They are stronger as compare to natural magnet.
- They can be permanent or temporary.

# a). Permanent Artificial Magnet

- Permanent magnet do not loss their magnetic property once they are magnetized (Induced by external source of energy).
- Ex :- Neodymium Magnet like Bar magnet, Cylindricalmagnet, Circular magnet, Horse shoe magnet.



# b). Temporary Artificial Magnet

- Made by the soft metals that are magnetized by the permanent Magnetic Field or electric current.
- After remove from the permanent magnetic field or electric current they behave like a soft metal.
- Ex :- 1. Electromagnet
  - 2. Superconducting magnet

# **Electromagnet**

- An electromagnet is a type of temporary magnet in which the magnetic field is produced by an electric current.
- Electromagnets usually consist of wire wound into a coil.
- The wire turns are often wound around a magnetic core made from a ferromagnetic or ferromagnetic material such as iron or nickel.
- A current pass through the wire creates a magnetic field in the coil, and coil behave like A magnet.
- The magnetic field disappears when the current is turned off.



# Superconducting Magnet

- A superconducting magnet is an electromagnet made from coils of superconducting wire.
- They must be cooled to cryogenic temperatures during operation.
- In its superconducting state the wire has no electrical resistance and therefore can conduct much larger electric currents than ordinary wire, creating intense magnetic fields.
- Liquid helium is used as a coolant for many superconductive windings. It
  has a boiling point of 4.2 K, far below the critical temperature of most
  winding materials.
- The magnet and coolant are contained in a thermally insulated container (dewar) called a cryostat.
- Use :- In MRI

## What is Electromagnetism?

- Electromagnetism is the branch of physics that studies the behaviour and interactions of electric and magnetic fields.
- Electromagnetism is the force that gives rise to electric fields and magnetic fields, with the electric field exerting a force on charged particles, and the magnetic field exerting a force on moving charges.

• Electric fields are caused by electric charges, while magnetic fields are

caused by moving electric charges.

- Applications of Electromagnetism :-
  - 1.Electric motors and generators
- 2. Electric power transmission
- 3. Electromagnets in MRI etc.